Виды адренорецепторов

Физиология адренорецепторов

Виды адренорецепторов

Эффекты, обусловленные эпинефрином (принятый в России синоним — адреналин), называются адренер-гическими,а ацетилхолином — холинергическими.

В настоящее время известно, что нейротрансмит-тером, опосредующим подавляющее большинство эффектов симпатической нервной системы, является норэпинефрин (принятый в России синоним норад-реналин). Норадреналин высвобождается в оконча­ниях всех постганглионарных симпатических воло­кон, воздействуя на эффекторные клетки (рис. 12-1).

Исключение составляют эккринные потовые железы и некоторые кровеносные сосуды. В отличие от норадреналина ацетилхолин высвобождается в окончаниях всех преганглионарных и парасимпа­тических постганглионарных волокон (см. гл. 10).

Норадреналин синтезируется и накапливается в пузырьках в цитоплазме постганглионарных симпатических волокон (рис. 12-2). Норадреналин высвобождается из нервных окончаний в процессе экзоцитоза.

Действие норадреналина прекращает­ся в результате захвата и повторного депонирова­ния окончаниями постганглионарных симпатичес­ких волокон (ингибируется трициклическими антидепрессантами); диффузии из рецепторных мест связывания; метаболизма с участием моно-аминоксидазы (угнетается ингибиторами моно-аминоксидазы) и катехол-О-метилтрансферазы (рис. 12-3). Длительная адренергическая актива­ция ведет к десенситизации адренорецепторов и угнетает их реакцию на стимуляцию.

Адренергические рецепторы делят на две глав­ные группы — альфа (α) и бета (β). Каждую из групп подразделяют по меньшей мере на две под­группы: α1 и α2, β1 и β2.

α1 –Адренорецепторы

α1-Адренорецепторы представляют собой постси-наптические адренорецепторы, расположенные в гладких мышцах бронхов, радужной оболочки глаз, кровеносных сосудов, матки, кишечника и органов мочеполовой системы. Активация α1-адренорецепто-ров увеличивает концентрацию ионов кальция внут­ри клетки, что приводит к сокращению мышц.

Аго-нисты α1-адренорецепторов вызывают мидриаз (за счет сокращения радиальной мышцы радужной обо­лочки), сужение бронхов, сужение кровеносных со­судов, сокращение матки, сокращение сфинктеров желудочно-кишечного и мочеполового трактов.

Кро­ме того, активация α1-адренорецепторов подавляет секрецию инсулина и стимулирует гликогенолиз и глюконеогенез. Некоторое количество α1-адреноре­цепторов находится в миокарде, при их стимуляции сила сердечных сокращений слегка увеличивается, а частота — уменьшается.

Несмотря на многообразие эффектов, наиболее важный результат стимуляции α1-адренорецепторов — это сужение кровеносных со­судов, приводящее к повышению ОПСС и АД.

α2-Адренорецепторы

В отличие от α1-адренорецепторов α2-адрено-рецепторы располагаются в основном пресинапти-чески, на нервных окончаниях. Активация α2-адренорецепторов угнетает активность адени-латциклазы, что в свою очередь подавляет поступ­ление ионов кальция в нервные окончания.

Сниже­ние концентрации кальция нарушает механизм экзоцитоза, за счет чего происходит ингибирование выделения норадреналина в синаптическую щель. Таким образом, агонисты α2-адренорецепторов по механизму отрицательной обратной связи подавля­ют высвобождение норадреналина из нейронов.

По­мимо этого, в гладкомышечных клетках сосудов на­ходятся постсинаптические α2-адренорецепторы, стимуляция которых вызывает вазоконстрикцию.

Чрезвычайно важно, что стимуляция постсинаптических α2-адренорецепторов в ЦНС оказывает седа-тивный эффект и подавляет симпатическую им-пулъсацию, что снижает ОПСС и АД.

β1 – Адренорецепторы

β1-Адренорецепторы расположены постсинапти-чески, в подавляющем большинстве сосредоточе­ны в сердце. Их стимуляция приводит к актива­ции аденилатциклазы, что обеспечивает синтез цАМФ из АТФ и инициирует каскад фосфори-лирования киназы. Конечный эффект агонистов β1-адренорецепторов — увеличение силы и часто­ты сердечных сокращений, облегчение проводи­мости.

β2-Адренорецепторы

β2-Адренорецепторы — это главным образом постси-наптические адренорецепторы, расположенные в гладкомышечных и железистых клетках.

Рис. 12-1.Симпатическая нервная система. Иннервация органов, типы рецепторов, их распределение и эффекты при стимуляции.

В отличие от краниосакральной локализации парасимпатической нервной системы (рис. 10-2), сим­патический ствол связан с торакоабдоминальным отделом спинного мозга (T1-L3).

Другим анатомическим отличием симпатической системы является большее расстояние от вегетативных узлов до висцеральных структур

Стимуля­ция β2-адренорецепторов — так же как и β1-адреноре-цепторов — приводит к активации аденилатциклазы.

Но несмотря на это сходство агонисты β2-адреноре-цепторов вызывают совсем другие эффекты — брон-ходилатацию, вазодилатацию, расслабление матки (токолитическое действие), мочевого пузыря и ки­шечника. Происходит стимуляция гликогенолиза и глюконеогенеза, увеличивается секреция инсулина.

Агонисты β2-адренорецепторов активируют натрий-калиевый насос, который перемещает ионы калия внутрь клетки, что может способствовать возникно­вению гипокалиемии и аритмий.

Адреномиметики

Адреномиметики неодинаковы по специфичности (селективности) воздействия на α- и β-адреноре-цепторы (табл. 12-1). Неизбирательность действия затрудняет предсказуемость клинического эффек­та.

Например, адреналин стимулирует α1-, α2-, β1- и β2-адренорецепторы, поэтому его влияние на АД определяется балансом между вазоконстрикцией (опосредованной через α1), вазодилатацией (опо­средованной через α2 и β2) и повышенной сократи­мостью миокарда (опосредованной через β1). Более того, соотношение этих эффектов зависит еще и от дозы адреналина.

Рис. 12-2.Биосинтез норадреналина. Гидроксилирование тирозина, в ходе которого образуется ДОФА (диоксифенил-аланин) — ключевая реакция, определяющая скорость синтеза катехоламинов. Дофамин активно транспортируется в синаптические пузырьки. В мозговом веществе надпочечников из норадреналина образуется адреналин

Выделяют адреномиметики прямого и непря­мого действия. Адреномиметики прямого дей­ствия связываются с адренорецепторами, в то время как адреномиметики непрямого действия усиливаютвысвобождение норадреналина или уг­нетают его обратный захват.

Различия между эф­фектами препаратов прямого и непрямого дей­ствия становятся особенно выраженными, если запасы эндогенного норадреналина изменены, на­пример при воздействии некоторых гипотензив-ных препаратов или ингибиторов МАО.

У таких больных интраоперационную гипотонию следует лечить только адреномиметиками прямого дей­ствия, потому что реакция на адреномиметики не­прямого действия может быть извращена.

Кроме того, адреномиметики неодинаковы и по химической структуре. Препараты, содержащие 3,4-дигидроксибензол, относят к катехоламинам. Продолжительность действия катехоламинов неве­лика, поскольку они быстро расщепляются под вли­янием моноаминоксидазы и катехол-О-метилтранс-феразы.

Следовательно, ингибиторы МАО и трициклические антидепрессанты резко усиливают прессорный эффект катехоламинов. В организме вырабатываются такие катехоламины, как адреналин, норадреналин и дофамин.

При изменении структу­ры боковых цепей природных катехоламинов полу­чают синтетические катехоламины (например, изопротеренол, добутамин), которые взаимодей­ствуют с адренорецепторами более избирательно.

Ниже описаны адреномиметики, наиболее час­то используемые в анестезиологии.

Необходимо подчеркнуть, что длительную инфузию для одних препаратов рассчитывают в мкг/(кг х мин), в то время как для других — в мкг/мин.

Чувствитель­ность к адреномиметикам широко варьируется, в связи с чем рекомендованные дозы носят лишь ориентировочный характер; на практике их подби­рают в зависимости от эффекта.

Фенилэфрин (мезатон)

Эффекты и применение

Фенилэфрин — некатехоламиновый адреномиме-тик прямого действия, стимулирующий главным образом α1-адренорецепторы (а в высоких дозах также α2- и β-адренорецепторы). Главный эффект — периферическая вазоконстрикция, сопровожда­ющаяся повышением ОПСС и АД.

Рефлекторная брадикардия иногда приводит к снижению сердечного выброса.

Коронарный кровоток увеличи­вается, потому что прямые сосудосуживающие влияния фенилэфрина на артерии сердца нивели­руются вазодилатацией, обусловленной высво­бождением метаболитов и повышением коро­нарного перфузионного давления. Почечный кровоток снижается (табл. 12-2).

Рис. 12-3.Этапы метаболизма норадреналина и адреналина. Моноаминоксидаза (МАО) и катехол-О-метилтрансфе-раза (KOMT) расщепляют эти катехоламины до конечного продукта — ванилинминдальной кислоты

ТАБЛИЦА 12-1.Взаимодействие адреномиметиков с различными типами адренорецепторов

Препарат α1 α 2 β1 β2 ДA1
Метоксамин +++ + о о О
Фенилэфрин +++ + + о о
Метараминол1 +++ ? ++ о о
Метилдопа + +++ о о о
Клонидин + +++ о о о
Адреналин2 ++ ++ +++ ++ о
Эфедрин1 ++ ? +++ О
Норадреналин2 + + ++++ О О
Дофамин2 + + ++ ++ + +++
Допексамин О О + +++ ++
Мефентермин1 + ? ++ + О
Изопротеренол О О +++ +++ О
Добутамин о/+ О +++ + О
Тербуталин О О + +++ О

Примечание:

О — эффект отсутствует;

+ — слабая стимуляция;

++ — умеренная стимуляция; +++ — сильная стимуляция;

? — данных нет;

ДА1 — дофаминергические рецепторы. 10сновной механизм действия метараминола, эфедрина и мефентермина — непрямая стимуляция. 2 Только высокие дозы адреналина, норадреналина и дофами-на вызывают выраженную стимуляцию α1 -адренорецепторов.

Источник: //megaobuchalka.ru/5/22385.html

Типы адренорецепторов и их эффекты

Виды адренорецепторов

Биологические эффекты адреналина и норадреналина реализуются через девять разных адренорецепторов (α1A,B,D, α2A,B,C, β1, β2, β3). В настоящее время клиническое значение имеет лишь классификация на α1-, α2-, β1- и β2-рецепторы. Агонисты адренорецепторов используются по различным показаниям.

а) Влияние на гладкие мышцы. Противоположное влияние негладкие мышцы при активации α- и β-адренорецепторов обусловлено разницей в передаче сигнала. Стимуляция α1-рецепторов приводит к активации фосфолипазы С через белки Gq/11, с последующей продукцией внутриклеточного посредника инозитолтрифосфата (IP3) и повышением внутриклеточного высвобождения ионов Са2+.

Совместно с белком кальмодулином Са2+ активирует киназу легкой цепи миозина, что приводит к повышению тонуса гладких мышц за счет фосфорилирования сократительного белка миозина (вазоконстрикция). α2-адренорецепторы также могут вызывать сокращение гладкомышечных клеток путем активации фосфолипазы С через βγ-субъединицы белков Gi.

цАМФ ингибирует активацию киназы легкой цепи миозина. С помощью стимулирующих белков G (Gs) β2-рецепторы вызывают повышение продукции цАМФ (вазодилатация).

Дальнейшее ингибирование киназы легкой цепи миозина приводит к расслаблению гладкомышечных клеток.

б) Вазоконстрикция и вазодилатация. Вазоконстрикция при местном введении α-симпатомиметиков может использоваться при инфильтрационной анестезии или для снятия заложенности носа (нафазолин, тетрагидрозолин, ксилометазолин).

Системное введение адреналина важно для повышения АД при купировании анафилактического шока и остановки сердца. Антагонисты α1-адренорецепторов используются при лечении гипертензии и доброкачественной гиперплазии простаты.

в) Бронходилатация. Бронходилатация в результате стимуляции β2-адренорецепторов занимает основное место в лечении бронхиальной астмы и хронической обструктивной болезни легких.

С этой целью β2-агонисты обычно вводятся инфляционно; предпочтительными являются препараты с низкой пероральной биодоступностью и низким риском системных нежелательных реакций (фенотерол, сальбутамол, тербуталин).

г) Токолитическое действие. Расслабляющее действие на миометрий агонистов β2-адренорецепторов, например фенотерола, можно использовать для профилактики преждевременных родов.

β2-вазодилатация у матери с неизбежным падением системного АД вызывает рефлекторную тахикардию, которая также частично связана с β1-стимулирующим действием этих препаратов.

Более длительная стимуляция β2-рецепторов токолитическими средствами приводит к снижению их эффективности, при этом возникает необходимость в повышении дозы (десенситизация рецепторов).

д) Стимуляция сердечной деятельности. При стимуляции β-рецепторов и, следовательно, образования цАМФ катехоламины усиливают все сердечные функции, в т. ч.

ударный объем (положительный инотропный эффект), скорость сокращения кардиомиоцитов, частоту импульсов, генерируемых синоатриальным узлом (положительный хронотропный эффект), скорость проведения (дромотропный эффект) и возбудимость (батмотропный эффект).

В волокнах пейсмекеров активируются цАМФ-зависимые каналы (пейсмекерные каналы), что приводит к ускорению диастолической деполяризации и более быстрому достижению порога возбуждения для потенциала действия. цАМФ активирует про-теинкиназу А, которая фосфорилирует различные белки-переносчики Са2+.

С помощью такого механизма ускоряется сокращение кардиомиоцитов за счет вхождения большего количества Са2+ в клетку из внеклеточного пространства через Са2+-каналы L-типа и усиливается высвобождение Са2+ из саркоплазматического ретикулума (через рецепторы рианодина, RyR). Ускоренное расслабление кардиомиоцитов происходит в результате фосфорилирования тропонина и фосфоламбана (уменьшение ингибирующего эффекта Са2+-АТФазы).

При острой сердечной недостаточности или остановке сердца β-симпатомиметики используются в качестве средства неотложной помощи с коротким периодом действия. Они не показаны при хронической сердечной недостаточности.

е) Метаболические эффекты.

β1-рецепторы через цАМФ и α1-рецепторы через сигнальные метаболические пути Gq/11 ускоряют превращение гликогена в глюкозу (гликогенолиз) (А) как в печени, так и в скелетных мышцах.

Из печени глюкоза высвобождается в кровь. В жировой ткани триглицериды гидролизируются до жирных кислот [липолиз, опосредованный β2- и β3-рецепторами), которые затем попадают в кровь.

ж) Снижение чувствительности рецепторов. Длительная стимуляция агонистом активирует клеточные процессы, приводящие к уменьшению сигнала от рецепторов (десенситизация).

Через несколько секунд после активации рецептора стимулируются киназы(протеинкиназа А, киназы парного рецептора белка G, GPCR).

Они фосфорилируют внутриклеточные участки рецепторов, что приводит к разделению рецептора и белка G.

Фосфорилированные рецепторы распознаются адаптерным белком аррестином, который, в свою очередь, активирует внутриклеточные сигнальные метаболические пути и инициирует эндоцитоз рецепторов в течение нескольких минут.

Рецепторы на клеточной поверхности удаляются путем эндоцитоза и захватываются эндосомами.

Отсюда рецепторы транспортируются далее на лизосомы до разрушения или возвращаются в плазматическую мембрану (рециркуляция), где они готовы для передачи следующего сигнала.

//www.youtube.com/watch?v=A_Ns-DZc6Zk

Длительная активация рецепторов (часы) также уменьшает синтез новых рецепторных белков за счет влияния на транскрипцию, стабильность РНК и трансляцию.

В целом эти процессы защищают клетку от избыточной стимуляции, но они также уменьшают действие препаратов-агонистов. При длительном или повторном введении агониста достигнутые эффекты уменьшаются (тахифилаксия).

При введении β2-симпатомиметиков в виде инфузии для предупреждения преждевременных родов токолитическое действие устойчиво снижается.

Против этого процесса обычно повышают дозы лекарственного средства только в течение короткого времени, до тех пор пока нарастающая тахикардия из-за активации сердечных β-рецепторов не ограничит дальнейшее повышение дозы.

– Также рекомендуем “Связь структуры симпатомиметика и его активность”

Оглавление темы “Фармакология вегетативной нервной системы”:

Источник: //meduniver.com/Medical/farmacologia/tipi_adrenoreceptorov.html

А-адренорецепторы, их строение, подтипы, функционирование и распределение в организме

Виды адренорецепторов

a-Адренорецепторы вызывают сужение сосудов, наиболее чувствительны к адреналину, меньше реагируют на норадреналин и очень слабо воспринимают действие изадрина

Основные α-адренорецепторы представлены α 1- и α2-адренорецепторами. α 1-Адренорецепторы локализуются постсинаптически, α2-адренорецепторы – пресинаптически и вне синапсов.

Физиологическая роль пресинаптических α2-адренорецепторов заключается в их участии в системе обратной отрицательной связи, регулирующей высвобождение норадреналина.

Возбуждение этих рецепторов норадреналином тормозит высвобождение норадреналина из варикозных утолщений1.

α2-Адренорецепторы расположены и на мембранах эффекторных клеток, вне синапсов. Предполагают, что в сосудах они локализуются в неиннервируемом слое.

Эффекты возбуждения a1-адренорецепторов:

• сокращение радиальной мышцы радужки с расширением зрачков (мидриаз; греч. amydros —темный, неясный);

• сужение сосудов кожи, слизистых оболочек, органов пищеварения, почек и головного мозга;

• повышение АД;

• сокращение капсулы селезенки с выбросом депонированной крови;

• сокращение сфинктеров пищеварительного тракта и мочевого пузыря;

• уменьшение моторики и тонуса желудка и кишечника.

a2-Адренорецепторы снижают активность аденилатциклазы.

• Постсинаптические a2-адренорецепторы суживают сосуды кожи и слизистых оболочек, тормозят моторику желудка и кишечника, уменьшают секрецию кишечного сока.

• Пресинаптические a2-адренорецепторы по принципу отрицательной обратной связи снижают выделение норадреналина из адренергических окончаний при избытке медиатора в синаптической щели (увеличивают калиевую проводимость мембран, блокируют кальциевые каналы L- и N-типов).

• Внесинаптические a2-адренорецепторы вызывают спазм сосудов, подавляют секрецию инсулина и повышают агрегацию тромбоцитов.

29. β -адренорецепторы, их строение, подтипы, функционирование и распределение в организме.

β-Адренорецепторы расширяют сосуды, обладают максимальной чувствительностью к изадрину, в 10 — 50 раз слабее возбуждаются адреналином и мало реагируют на норадреналин.

Среди пост- и внесинаптических β-адренорецепторов выделяют β1-адренорецепторы (например, в сердце), β2-адренорецепторы (в бронхах, сосудах, матке) и β3-адренорецепторы (в жировой ткани).

Норадреналин действует преимущественно на иннервируемые β1-адренорецепторы (постсинаптические рецепторы), а адреналин, находящийся в крови, – на β2-адренорецепторы, не имеющие иннервации (внесинаптические рецепторы).

β-Адренорецепторы, активируя аденилатциклазу, повышают синтез ц-АМФ.

Для постсинаптических β1-адренорецепторов характерны следующие эффекты:

• возбуждение сердца — тахикардия, ускорение проведения потенциала действия по проводящей системе, усиление сокращений миокарда, рост потребности в кислороде (β1-адренорецепторы повышают фосфорилирование кальциевых каналов и белка фосфоламбана, прямо открывают кальциевые каналы в миокарде, что сопровождается увеличенным входом ионов кальция и мобилизацией их из саркоплаз-матического ретикулума);

• ослабление моторики кишечника;

• секреция ренина;

• цАМФ-зависимый липолиз в жировых депо.

Постсинаптические ивнесинаптические β2-адренорецепторы:

• расширение сосудов сердца, легких и скелетных мышц;

• снижение АД;

• расширение бронхов и уменьшение секреторной функции бронхиальных желез;

• торможение моторики желудка и кишечника;

• расслабление желчного пузыря, мочевого пузыря, беременной и небеременной матки;

• усиление цАМФ-зависимых гликогенолиза и гликонеогенеза в печени, гликогенолиза в скелетныхмышцах;

• повышение секреции инсулина.

Фармакологическое действие альфа-адреномиметиков.

Преимущественным влиянием на α1-адренорецепторы обладает мезатон (фенилэфрина гидрохлорид). Он также относится к фенилалкиламинам. Наряду с прямым действием у мезатона отмечено и некоторое опосредованное действие на адренорецепторы (в незначительной степени способствует высвобождению из пресинаптических окончаний норадреналина).

Как и норадреналин, мезатон в основном влияет на сердечно-сосудистую систему. Повышает артериальное давление (при внутривенном введении в течение примерно 20 мин, при подкожном – 40-50 мин), вызывает рефлекторную брадикардию. Непосредственно на сердце практически не действует. Оказывает незначительное стимулирующее влияние на ЦНС. В отличие от норадреналина мезатон более стоек.

Эффективен при приеме внутрь. Показания к применению сходны с таковыми для норадреналина. Мезатон используется в качестве прессорного средства. Кроме того, его назначают местно при рините. Возможно сочетание с анестетиками. Мезатон показан также при лечении открытоугольной формы глаукомы.

По химическому строению α2-адреномиметик нафтизин (нафазолина нитрат, санорин) существенно отличается от норадреналина и мезатона. Это производное имидазолина (см. структуру). Нафтизин по сравнению с норадреналином 175 и мезатоном вызывает более длительный сосудосуживающий эффект. На ЦНС оказывает угнетающее влияние . Применяют его местно при рините.

Аналогичным нафтизину препаратом является галазолин (ксилометазолин). Он также относится к производным имидазолина. Применяют его местно при остром рините. Оказывает некоторое раздражающее действие.

31. Фармакологическое действие альфа-адреноблокаторов.

Наличие у веществ α-адреноблокирующего эффекта легко обнаруживается по их способности уменьшать прессорное действие адреналина или извращать его. Последнее проявляется в том, что на фоне действия α-адреноблокаторов адреналин не повышает артериальное давление, а снижает его.

Это связано с тем, что на фоне блока α-адренорецепторов проявляется эффект стимулирующего влияния адреналина на β-адренорецепторы сосудов, что сопровождается их расширением (снижается тонус гладких мышц). К синтетическим препаратам, блокирующим α1- и α2-адренорецепторы, относятся фентоламин и тропафен. Фентоламин (регитин) – это производное имидазолина.

Характеризуется выраженным , но кратковременным α-адреноблокирующим действием (10-15 мин при внутривенном введении). Снижает артериальное давление, что обусловлено его α-адреноблокирующим и миотропным спазмолитическим действием. Вызывает тахикардию (отчасти за счет блока пресинаптических α2-адренорецепторов). Повышает моторику желудочно-кишечного тракта, увеличивает секрецию желез желудка.

На гипергликемический эффект адреналина фентоламин почти не влияет. Из желудочно- кишечного тракта всасывается плохо. Выделяются фентоламин и его метаболиты почками. Тропафен относится к сложным эфирам тропина. Сочетает в себе достаточно высокую α- адреноблокирующую активность и некоторые атропиноподобные свойства, в связи с чем вызывает понижение артериального давления и тахикардию.

Тропафен является антагонистом α-адреномиметиков. Отличается довольно продолжительным α- адреноблокирующим действием (измеряется часами) и превосходит в этом отношении фентоламин и дигидрированные алкалоиды спорыньи. 179 К полусинтетическим препаратам относятся дигидрированные алкалоиды спорыньи – дигидроэрготоксин и дигидроэрготамин.

Дигидрированные алкалоиды спорыньи отличаются от естественных более выраженным α- адреноблокирующим эффектом, отсутствием стимулирующего влияния на миометрий (небеременной матки), меньшим сосудосуживающим действием и более низкой токсичностью.

Дата добавления: 2018-02-28; просмотров: 222;

Источник: //studopedia.net/2_30378_a-adrenoretseptori-ih-stroenie-podtipi-funktsionirovanie-i-raspredelenie-v-organizme.html

Характеристика адренорецепторов

Виды адренорецепторов

Адренорецепторами называют молекулы клетки, которые реагируют на нейромедиатор норадреналин или гормон адреналин. Впервые мысль о возможном существовании нескольких типов адренорецепторов была выдвинута английским фармакологом Ahlquist в 1948 г. В настоящее время адренорецепторы подразделяют на 2 класса:

· a-адренорецепторы – этот класс рецепторов опосредует сокращение гладких мышц под влиянием адреналина. Обнаружено 2 типа a-адренорецепторов (a1 и a2), каждый из которых имеет по крайней мере 3 подтипа.

· b-адренорецепторы – этот класс рецепторов опосредует расслабление гладких мышц под влиянием адреналина. Обнаружено 3 типа b-адренорецепторов (b1, b2, b3).

Все типы адренорецепторов являются семейством мембранных рецепторов, связанных с G-белками. Подробная их характеристика представлена в таблице 4.

Таблица 4. Сравнительная харктеристика адренорецепторов.

Тип Агонист Антагонист Локализация Функция Механизм
a1 A>NA>Iso Фенилэфрин   Празозин Постсинаптические (на эффекторн. тканях)
a1А ? Тамсулозин (+)-нигульдипин Миокард   Печень   Гладкие мышцы МПС Повышение сократимости, аритмия “ гликогенолиза, ” синтеза гликогена Сокращение Активация через Gq-белок фосфолипазы С, D и А2, а также L-типа Са2+-каналов
a1В ? WB 4101 Гладкие мышцы ЖКТ Расслабление, уменьшение моторики и тонуса Активация Са2+-зависимых К+-каналов, гиперполяризация
a1D ? ? Гладкие мышцы сосудов кожи, слизистых, ЖКТ, почек и головного мозга Сокращение, повышение АД Как у a1А
a2 A>NA>Iso Клонидин Йохимбин Пресинаптические Внесинаптические
a2А Оксиметазолин ? Постганглионарные волокна (пресинаптически) Тромбоциты Мышцы сосудов ЦНС Снижение секреции медиатора (норадреналина) Агрегация Сокращение, “АД Седативное и анальгетическое действие Тормозят через Gi-белок аденилатциклазу, активируют К+-каналы, блокируют L- и N-тип Са2+-каналов
a2В ? ARC 239 b-клетки поджелудочной железы Снижение секреции инсулина
a2C ? ARC 239
b1 Iso>A=NA Добутамин Метопролол Постсинаптические Миокард     Клетки ЮГА   “ автоматизма (“ЧСС), проводимости и сократимости “ секреции ренина Активация через Gs-белок аденилатциклазы и L-типа Са2+-каналов
b2 Iso>A>>NA Сальбутамол БутоксаминПресинаптические Внесинаптические Гладкие мышцы (сосудов, дыхательных путей, ЖКТ, МПС) Скелетные мышцы Печень “ секреции NA     Расслабление     Гликогенолиз “ гликогенолиза ” синтеза гликогена
b3 Iso=NA>A BRL 37344 SR 59230 CGP 20712A Внесинаптические Жировая ткань   Липолиз

Примечание: A – адреналин, NA – норадреналин, Iso – изопреналин, МПС – мочеполовая система.

a1-адренорецепторы посредством Gq-белка передают сигнал на несколько эффекторных систем:

] Фосфолипазу С, которая гидролизует фосфатидилинозитол бифосфат (PIP2) до инозитов трифосфата (IP3) и диацилглицерола (DAG). Молекулы IP3 вызывают выход ионов Са2+ из внутриклеточного депо и активируют зависимые от Са2+ ферменты (кальмодулин).

DAG – обеспечивает активацию протеинкиназы С и фосфорилирование внутриклеточных белков, а также открывает Са2+-каналы мембраны.

Под влиянием ионов Са2+ и активного кальмодулина происходит дефосфорилирование киназы легких цепей миозина и она переходи в активную нефосфорилированную форму, при этом начинают фосфорилироваться легкие цепи миозина и запускается процесс сокращения гладкомышечных клеток (см. схему 6.).

] Фосфолипазу А2, которая гидролизует фосфолипиды с выделение арахидоновой кислоты. В последующем арахидоновая кислота трансформируется в простагландины и лейкотриены.

] Фосфолипазу D, которая гидролизует фосфатидилхолин до фосфатидной кислоты. Молекулы фосфатидной кислоты вызывают выделение ионов Са2+ из депо, активируют АДФ-рибозилирующий фактор.

] Показана возможность активации G-белками Са2+-каналов клетки.

a2-адренорецепторы посредством Gi-белка также передают сигнал на несколько эффекторных систем:

] Gi-белок снижает активность аденилатциклазы и уменьшает синтез цАМФ в клетке. В итоге, активность зависимых от цАМФ протеинкиназ падает.

] Через G0-белки тормозятся Са2+-каналы L- и N-типов.

] bg-субъединицы G-белка активируют К+-каналы мембраны.

] Относительно недавно было обнаружено, что bg-субъединицы Gi-белка могут стимулировать митоген-активирующие протеинкиназы (МАРК), которые обеспечивают процессы деления и размножения стволовых клеток.

Схема 5. Передача сигнала с адренорецепторов.

АС – аденилатциклаза, PkA – протеинкиназа А, PkC – протеинкиназа С, ФлС – фосфолипаза С, ФлА2 – фосфолипаза А2, ФлD – фосфолипаза D, ФХ – фосфатидилхолин, ФЛ – фосфолипиды, ФК – фосфатидная кислота, АхК – арахидоновая кислота, PIP2 – фосфатидилинозитол бифосфат, IP3 – инозитол трифосфат, DAG – диацилглицерол, Pg – простагландины, LT – лейкотриены.

b-адренорецепторы всех типов реализуют свое действие через Gs-белки. a-субъединицы этого белка активируют аденилатциклазу, которая обеспечивает синтез в клетке цАМФ из АТФ и активацию цАМФ зависимой протеинкиназы А. bg-субъединицы Gs-белка активируют Са2+-каналы L-типа и т.н.

maxi-K+-каналы. Под влиянием цАМФ-зависимой протеинкиназы А происходит фосфорилирование киназы легких цепей миозина и она переходит в неактивную форму, не способную фосфорилировать легкие цепи миозина. Процесс фосфорилирования легких цепей прекращается и гладкомышечная клетка расслабляется.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: //studopedia.ru/13_65453_harakteristika-adrenoretseptorov.html

Адренорецепторы – это… Понятие, определение, общие сведения, медицинское значение и их влияние на организм

Виды адренорецепторов

Адренорецепторы – это белки клеточной мембраны, их функция – соединять, а также распознавать адреналин и норадреналин, синтетические аналоги катехоламинов. Белки находятся во всех тканях и клетках. Есть альфа и бета-адренорецепторы, они уже выделены и очищены. Группы адренорецепторов отличаются реакцией к разным продуктам.

Рецепторы бывают: альфа1; альфа2; бета1; бета2; бета3.

Альфа

Альфа-адренорецепторы – это рецепторы, что проявляют восприимчивость к норадреналину. Когда они находятся в возбужденном состоянии, наблюдается сокращение селезенки, матки, уменьшение сосудов и расширение зрачков.

Бета

Бета-адренорецепторы – это рецепторы, что проявляются высокой эмотивностью к изадрину. Когда они возбуждены, сосуды начинают расширяться, бронхи расслабляются, учащаются сокращения сердца, также рецепторы приостанавливают сокращение матки.

Главные свойства рецепторов

Альфа1 и бета1 зачастую размещаются в постсинаптических мембранах, рецепторы проявляют чувствительность на работу норадреналина, он вырабатывается в нервных окончаниях постганлионарных нейронов симпатического отдела.

Рецепторы альфа2 и бета2 относятся к внесинаптическим, у них на мембранах размещены нейроны. Рецепторы группы альфа2 воздействуют, как адреналин и как норадреналин. Бета2 проявляют восприимчивостью к работе адреналина.

На пресинаптической мембране норадреналин работает по формуле отрицательной обратной связи (он способен ингибировать собственные выделения). Во время реакции адреналина на адренорецепторы группы бета2 выделение пресинаптической мембраны норадреналина увеличивается.

Адреналин формируется мозговым слоем надпочечников под действием норадреналина, образуется петля положительной обратной связи.

Краткая характеристика рецепторов

Основные характеристики следующие:

  • Альфа1 размещаются в артериолах, последствия стимуляции – это возникновение спазма в артериолах, в результате этого увеличивается давление, уменьшается сосудистая проницаемость и экссудативное воспаление.
  • Альфа2 относятся к пресинаптическими рецепторами, их характеризуют, как петлю обратной отрицательной связи для адренэргической системы, в конечном результате артериальное давление падает благодаря стимуляции.
  • Бета1 дислоцированный в сердце, стимуляция производит к увеличению силы и частоты сердечных сокращений. Помимо этого, последствие стимуляция – увеличение потребности миокарда в кислороде и поднятие артериального давления. Бета1 также есть и в почках, это рецепторы юкстагломерулярного аппарата.
  • Бета2 есть в бронхиолах, последствием стимуляции является увеличение бронхиол и устранение бронхоспазма. Эта группа рецепторов находится на клетках печени, под влиянием гормона возникает процесс гликогенелиза, вывод глюкозы в кровь.
  • Бета3 помещен в жировой ткани. Под действием таких рецепторов увеличивается липолиз, а под их влиянием выделяется энергия, и увеличивается теплопродукция.

Взаимодействие адренорецепторов

Между адренорецепторами и исполнительными системами клетки располагаются белки, их функция связывать гуаниловые нуклеотиды, так называемые G-белки. Они разделяются на типы: стимулирующие и ингибирующие.

Взаимосвязь адренорецепторов с G-белками является главнейших звеном механизма поступления сигналов через клеточную мембрану.

Классификация адренорецепторов была сделана на различиях чувствительности к фармакологическим средствам: адреностимуляторам и адреноблокаторам. Все адренорецепторы группы бета напрямую связаны с белками Gs альфа, они способствуют стимуляции аденилатциклазы, ускоряют поток кальция в клетки.

Передача сигнала от рецепторов альфа1 спровоцированная белком Gg и фосфоинозитидной системой. Альфа2 контактируют с белком Gi, после их активации наступает подавление синтеза цАМФ и поток кальция в клетки. Гены всех подтипов адренорецепторов являются клонами.

Основные физиологические реакции, связанные с адренорецепторами, основаны на их взаимодействии с эндогенными лигандами, катехрламиналами.

Блокаторы адренорецепторов ведут борьбу с катехоламинами за возможность связывания с рецепторами. Взаимодействуя с рецепторами без их активации, адреноблокаторы мешают вступать в связь с катехоламинами рецепторов, отвечающих за образование клеточной реакции. Адреноблокаторы способны оказывать влияние на все адренорецепторы и на подтипы рецепторов по-отдельности.

Медицинское значение

Если брать во внимание большую локализацию адренорецепторов во всем организме, то модуль их движения приводит к различным терапевтическим, либо токсическим последствиям.

Помимо веществ, которые стимулируют адренорецепторы, есть и другие факторы, вызывающие стимуляцию, они это делают с помощью МАО. Такое вещество способное уничтожить адреналин и норадреналин, а его ингибирование производит увеличение концентрации нейромедиаторов, а также увеличение стимуляции рецепторов. Ингибиторы МАО используются в роли антидепрессантов.

Адренорецепторы – это определенные рецепторы, которые применяются вместе с адреномиметрическими средствами, как сосудосуживающие препараты.

Эти средства в основном приписывают, чтобы поднять артериальное давление при шоковом состоянии, гипотонической болезни, коллапсе, конъюнктивитах, для уменьшения воспалительных процессов и сужения сосудов, а еще ими обрабатывают места для остановки кровотечения.

Адреномиметические вещества входят в канестезирующие средства, чтобы те могли работать. Для таких целей применяют почти все адреномиметические средства, кроме изадрина, который действует исключительно на бета-адренорецепторы, также исключают и фенамин, так как он провоцирует сильное психическое возбуждение.

Большое количество средств этой группы применяют как бронхорасширяющий препарат для устранения и профилактики приступов бронхиальной астмы, еще они применяются при астмоидных и эмфизематозных бронхитах.

Адреномиметрические средства запрещено употреблять при гипертонических болезнях, атеросклерозе и тиреотоксикозе.

Источник: //FB.ru/article/426174/adrenoretseptoryi---eto-ponyatie-opredelenie-obschie-svedeniya-meditsinskoe-znachenie-i-ih-vliyanie-na-organizm

БолезниНет
Добавить комментарий